Math 142 Lecture 11 Notes

Daniel Raban

February 20, 2018

1 Review: Identification Spaces and Embeddings

1.1 Identification spaces and continuity

1.1.1 Identification spaces and attaching maps

Let's review the concept of an identification space.

Let X be a space with a partition \mathcal{P} of X. We have a function $p: X \to \mathcal{P}$ mapping x to the element of \mathcal{P} containing x. Define a space Y that has:

- Points are elements of \mathcal{P} .
- Open sets are $U \subseteq \mathcal{P}$ such that $p^{-1}(U)$ is open.

Example 1.1. Let $X = \{1, 2, 3, 4\}$ with the open sets $\{\emptyset, \{1\}, \{3\}, \{1, 3\}, X\}$. Let

$$\mathcal{P} = \{\{1, 4\}, \{2, 3\}\}.$$

Then $p(1) = \{1, 4\}, p(2) = \{2, 3\}, p(3) = \{2, 3\}, and p(4) = \{1, 4\}.$

What sets are open in Y? We have $p^{-1}(\emptyset) = \emptyset \subseteq X$, so \emptyset is open in Y. Similarly, $p^{-1}(\{\{1,4\},\{2,3\}\}) = X$ is open, so the whole space Y is open. However, $p^{-1}(\{1,4\}) = \{1,4\} \subseteq X$ is not open, so $\{1,4\}$ is not open in Y. Also, $p^{-1}(\{2,3\}) = \{2,3\} \subseteq X$ is not open, so $\{2,3\}$ is not open in Y.

So we can call this space $Y = \{a, b\}$ with open sets $\{\emptyset, Y\}$, where $a = \{1, 4\}$ and $b = \{2, 3\}$.

The function $p: X \to \mathcal{P}$ corresponds to a map $p: X \to Y$. Is p continuous? If $U \subseteq Y$ is open, then $p^{-1}(U) \subseteq X$ is open; so yes, p is continuous. In general, this is not the only topology for which p is continuous, but it is the largest such topology.

Theorem 1.1. If X is a space, Y is an identification space (created from X), and Z is another space with maps

$$X \xrightarrow{p} Y \xrightarrow{J} Z,$$

then f is continuous iff $f \circ p$ is continuous.

Proof. This follows straight from the definitions of continuity and the topology on Y.

$$f \text{ is continuous } \iff \forall U \subseteq Z \text{ open, } f^{-1}(U) \subseteq Y \text{ is open}$$
$$\iff \forall U \subseteq Z \text{ open, } p^{-1}(f^{-1}(U)) \subseteq X \text{ is open}$$
$$\iff \forall U \subseteq Z \text{ open, } (f \circ p)^{-1}(U) \subseteq X \text{ is open}$$
$$\iff f \circ p \text{ is continuous.}$$

1.1.2 The largest topology with respect to continuity

Here is question 1c from the 2016 midterm.

Let $X = \{1, 2, 3, 4, 5\}$ with the topology with the base $\{\{1\}, \{1, 2\}, \{3\}, \{4, 5\}\}$. Let $f: X \to \{a, b, c\}$ be

$$f(1) = f(3) = a,$$
 $f(2) = f(4) = b,$ $f(5) = c$

What is the largest topology on Y such that f is continuous?

We want $U \subseteq Y$ open iff $f^{-1}(U) \subseteq X$ open. Let's check a few sets:

- $f-1(\{a\}) = \{1,3\}$ is open, so $\{a\}$ is open.
- $f^{-1}(\{c\}) = \{5\}$ is not open, so $\{c\}$ is not open.
- $f^{-1}(\{b\}) = \{2, 4\}$ is not open, so $\{b\}$ is not open.
- $f^{-1}(\{a,c\}) = \{1,3,5\}$ is not open, so $\{a,c\}$ is not open.
- $f^{-1}(\{b,c\}) = \{2,4,5\}$ is not open, so $\{b,c\}$ is not open.
- $f^{-1}(\{a,b\}) = \{1,2,3,4\}$ is not open, so $\{a,b\}$ is not open.

So the largest topology on Y making f continuous is $\{\emptyset, \{a\}, Y\}$.

1.2 Embeddings

Definition 1.1. An embedding $f: X \to Y$ is a function such that if we consider this as a map $f: X \to f(X)$, then f is a homeomorphism. Here, f(X) has the subspace topology.

Example 1.2. Let $f : \mathbb{R} \to \mathbb{R}^2$ send $x \mapsto (x, 0)$. Then f is an embedding of the real line into the plane.

Example 1.3. Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then $f : \mathbb{R} \to \mathbb{R}^2$ sending $x \mapsto (x, g(x))$ is an embedding sending x to the graph of x.

Example 1.4. The following is not an embedding. Let $f : [0,1) \to \mathbb{C}^2$ send $x \mapsto e^{2\pi i x}$. Here, f is a continuous bijection onto its image, the unit circle in \mathbb{C} . However, this is not a homeomorphism because [0, 1/2) is open in the subspace topology on [0, 1), but f([0, 1/2]) is not open in $S^1 \subseteq \mathbb{C}$.

How do we make an embedding in this case? First, let $f : [0,1] \to \mathbb{C}$ be $f(x) = e^{2\pi i x}$. However, this is not injective, so we use an identification space. Define the partition on [0,1]: $\mathcal{P} = \{\{x\} : x \neq 0,1\} \cup \{\{0,1\}\}$ The identification space Y is homeomorphic to S^1 . We showed this in class $(B^1/S^0 \cong S^1)$.

So we get an induced map $\tilde{f}: Y \to \mathbb{C}$, where $\{x\} \mapsto f(x), \{0,1\} \mapsto f(0) = f(1)$, and $f(x) = \tilde{f}(p(x))$ for all $x \in [0,1]$

Here, \tilde{f} is continuous iff f is continuous. We have $\tilde{f}: Y \to \mathbb{C} \cong \mathbb{R}^2$, where the domain is compact (as the continuous image of a compact space) and the codomain is Hausdorff (as a metric space), so f is a homeomorphism.